Today’s Data Center (DC) networks are facing increasing demands and a plethora of requirements. Factors for this are the rise of Cloud Computing, Virtualization and emerging high data rate applications such as distributed Machine Learning frameworks. Recently several new architectures have been proposed that rely on reconfigurable optics to evolve the topology over time, such as Helios[3], Projector[5], c-Through[1] or RotorNet[6]. Some of these approaches learn attributes of the traffic distribution in the network to determine topology configurations, e.g., xWeaver[4] or DeepConf[2]. A different stream of research focuses on generating adversarial input to networks or networking algorithms [7,8] to identify weak spots or improve robustness and solution quality of data-driven approaches.

The goal of this thesis is to apply the latter one to reconfigurable topology designs with the main focus on the data-driven variants (xWeaver) to benchmark their performance and to improve their solution quality.

The thesis builds upon an existing flow-level simulator in Python and initial algorithms that generate adversarial inputs for networking problems.


Advisors

Johannes Zerwas, Andreas Blenk