

Forschungspraxis, Bachelor's Thesis

Implementation of Fault-Injection & Fault-Detection Mechanisms in a Time-Division Multiplexed Network on Chip

Enabled by ever decreasing structure sizes, modern System on Chips (SoC) integrate a large amount of different processing elements, making them Multi-Processor System on Chips (MPSoC). These processing elements require a communication infrastructure to exchange data with each other and with shared resources such as memory and I/O ports. The limited scalability of bus-based solutions has led to a paradigm shift towards Network on Chips (NoC) which allow for multiple data streams between different nodes to be exchanged in parallel.

To implement safety-critical real-time applications on such an MPSoC, the NoC must be fault-tolerant. In order to fulfill this requirement, it is necessary to first detect a fault in the system. Furthermore, to test this requirement, it is necessary to be able to inject errors into the system at random times and places.

Goal

The goal of this thesis is to implement a fault-injection and a fault-detection mechanism in a Time-Division Multiplexed (TDM) NoC and to create tests to validate the behavior of the hardware models.

Prerequisites

To successfully complete this project, you should already have the following skills and experiences:

- At least basic programming skills in a hardware description language i.e. VHDL or (System)Verilog
- Solid Python programming skills
- At least basic knowledge of the functionality of NoCs
- Self-motivated and structured work style

Learning Objectives

By completing this project, you will be able to

- understand the concept of TDM NoCs
- understand the concept of fault-detection in hardware
- create and extend hardware modules in SystemVerilog
- create tests to validate hardware modules
- document your work in form of a scientific report and a presentation

Contact

Max Koenen Room N2118 Tel. 089 289 23084 max.koenen@tum.de

Advisors

Max Koenen