Enabled by ever decreasing structure sizes, modern System on Chips (SoC) integrate a large amount of different processing elements, making them Multi-Processor System on Chips (MPSoC). These processing elements require a communication infrastructure to exchange data with each other and with shared resources such as memory and I/O ports. The limited scalability of bus-based solutions has led to a paradigm shift towards Network on Chips (NoC) which allow for multiple data streams between different nodes to be exchanged in parallel.

In order to implement a safety-critical real-time application on such an MPSoC, the NoC must fulfill certain requirements: it must ensure that no critical data gets lost, all critical data gets delivered within a certain deadline, and other applications cannot interfere with the critical application. And all this must be guaranteed even in case of a fault in the NoC. Furthermore, to offload the processing elements and to decrease the amount of required buffers, DMA transfers should be supported.

Goal

The goal of this thesis is to implement a DMA Controller in a Network Interface supporting a hybrid Time-Division Multiplexed (TDM) and packet-switched NoC that provides protection switching for critical traffic and to create tests to validate the behavior of the implemented hardware.

Prerequisites

To successfully complete this project, you should already have the following skills and experiences:

- Very good programming skills in a hardware description language i.e. (System)Verilog or VHDL
- Solid Python programming skills
- At least basic knowledge of the functionality of NoCs
- Self-motivated and structured work style

Learning Objectives

By completing this project, you will be able to

- understand the concept of TDM NoCs and DMA transfers
- design and implement a complex hardware module in SystemVerilog
- create tests to validate hardware modules
- document your work in form of a scientific report and a presentation

Advisors

Max Koenen