Forschungspraxis/Research Internship, Master’s Thesis:
Deep Learning Techniques for Side-Channel Attack

In side-channel analysis (SCA), an attacker exploits information leakage from power measurements, EM emanations and other sources to obtain the secret of the target device. Powerful SCA attacks such as Template Attacks struggle under suboptimal conditions such as desynchronized traces and clock jitter in the DUT.

Recently, Deep Learning techniques have been proposed [1,2] to improve SCA. Furthermore, different data sets have been published [1,3] enabling the evaluation and comparison of different Deep Learning algorithms.

Depending on your background and type of work, possible tasks of this project include

- Develop a Convolutional Neural Network for SCA on existing datasets
- Compare Deep Learning Techniques to classical SCA (CPA, Template Attacks, ...)
- Create further datasets as base for machine learning evaluations

This work can be conducted in English or German. In case of high quality of the work, results might be published.

Prerequisites:

- Basic understanding of machine learning algorithms (e.g. Neural Networks, ...)
- Basic understanding of Side-Channel Analysis (e.g. from visiting the lecture Sichere Implementierung kryptographischer Algorithmen and/or Smart Card Lab)
- Good programming skills in Python

References

[2] Cagli et al.: Convolutional Neural Networks with Data Augmentation Against Jitter-Based Countermeasures, CHES 2017

If you are interested in the topic or have further questions contact

Technische Universität München
Lehrstuhl für Sicherheit in der Informationstechnik
Lars Tebelmann / Thomas Schamberger
Theresienstr. 90, N1010
E-Mail: lars.tebelmann@tum.de / t.schamberger@tum.de

October 31, 2019