Forschungspraxis, Master's Thesis

[identification] Simulation and performance improvement of identification codes
Identification is a communication scheme that allows rate doubly exponential in the blocklength, with the tradeoff that identities cannot be decoded (as messages do) but can only be verified.

The double exponential growth presents various challenges in the finite regime: there are heavy computational costs introduced at the encoder and decoder and heavy trade-offs between the error and the codes sizes.

The ultimate goal is to find a fast, reliable implementation while still achieving large code sizes.

Identification codes can be achieved by first removing the errors from the channel with regular transmission channel coding, and then sending a challenge though the corrected channel. For every identity \(i \), the challenge is generated by picking a random input \(m \) and computing the corresponding output \(T_i(m) \) using a function \(T_i \) that depends on the identity. The challenge is then the pair \(m, T_i(m) \) and the receiver wanting to verify an identity \(j \) will verify whether \(j = i \) by testing the challenge. This is done by recomputing the output with \(T_j \) and verifying whether \(T_j(m) = T_i(m) \). The errors are reduced by ensuring that the various functions collide on a small fraction of the possible inputs.

It turns out that choosing good sets of functions \(\{ T_i \} \) is the same as choosing error-correction codes \(\{ c_i \} \) with large distance, where now each codeword \(c_i \) defines a function by mapping positions \(m \) (sometimes called code locators) to symbols \(c_i(m) \) of the codeword.

We can thus construct identification codes by choosing error-correction codes where we are only interested in the performance of the error correction encoders (we are not interested in the error-correction decoder or error-correction codes).

Your task will be speeding up the current implementations based on Reed-Solomon and Reed-Muller codes:

The coding will be in Python/Sagemath.
This work can accommodate multiple students.
The working language will be in English.

Environment: we collaborate with LTI. At LNT and LTI there is currently a lot of funding for research in identification. Therefore you will find a large group of people that might be available for discussion and collaboration.

Prerequisites

Nachrichtentechnik 2

Advisors

Roberto Ferrara