The Analysis of Dual Data Gathering Strategy for Internet-of-Things Devices in Status Update Systems

The analysis of a dual data-gathering strategy for Internet-of-Things (IoT) devices in status update systems offers valuable insights into improving the efficiency and reliability of data collection in IoT environments. This thesis focuses on investigating the dual data gathering strategy, aiming to optimize the performance of status update systems in IoT deployments. The dual data-gathering strategy takes advantage of both local and remote processing capabilities. Using different source servers, this strategy aims to reduce energy consumption and network congestion in status update systems. The anticipated outcomes of this research include a comprehensive understanding of the dual data gathering strategy, mathematical models to analyze its performance, and insights into its practical implementation. These outcomes will not only advance the theoretical understanding of status update systems in IoT but also have practical implications for the design and deployment of IoT networks and applications.

Advisors
Polina Kutsevol
Dr. Andrea Munari (DLR - Deutsches Zentrum für Luft- und Raumfahrt)