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Kurzfassung

Das Ziel beim Traffic Engineering in Rechenzentrumsnetzwerken ist es, die ho-
he Bisektionsbandbreite, die in Rechenzentrumsnetzwerken typischerweise ver-
wendet wird, möglichst effizient zu nutzen. Hierfür werden Lastausgleichsver-
fahren benötigt. Aktuelle Techniken zur Lastverteilung basieren dabei auf einer
gleichmäßigen Aufteilung von Flüssen über verfügbare Pfade zwischen zwei End-
punkten. Hierbei kanne es jedoch zur Kollision eines großen Flusses mit vielen
kleinen Flüssen kommen. Dies resultiert in Paketverlusten, die Flusszeit erhöhen.
Diese Thesis untersucht, ob eine ungleichmäßige Auslastung in diesen Situationen
von Vorteil ist. Größere Flüsse können dann auf die weniger ausgelasteten Pfade
gelegt werden und somit Paketverluste vermieden werden. Um dies zu Untersu-
chen, wird in dieser Masterarbeit ein verteiltes Protokoll entwickelt, im Netzwerk-
simulator ns-3 implementiert und in Simultationen ausgewertet. Die Ergebnisse
zeigen, dass ein gezieltes Ungleichgewicht in zu einer Verringerung der Flusszeiten
um bis zu 50% für FatTree Topologien der Größe k=8 bis k=16.
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Abstract

The goal in load balancing and traffic engineering in data center networks is to
use the large bisection bandwidth and path diversity of data center networks most
efficiently. For this, load balancing schemes are needed. The goal of existing
approaches is to keep paths approximately equally loaded. Due to the heavy
tailed distribution of flow sizes and the bursty nature of flows, keeping links equally
loaded can lead to collisions of large with many small flows. Collisions can result
in packet loss, which increases the flow completion time. This hurts especially
small flows. This thesis investigates whether load imbalancing over paths can
mitigate this problem. Large flows can then be forwarded over low utilized paths,
mitigating the risk of collisions. To ingestigate this hypothesis, this thesis designs
a distributed load imbalancing scheme called IMBAL and implements it in the
network simulator ns-3. IMBAL improves FCT up to 50% on fat-tree topologies
ranging in size from k=8 to k=16.
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Chapter 1

Introduction

(a) Order of arriving flows.
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(b) Load Balancing.
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(c) Load Imbalancing.

Figure 1.1: Imbalancing load over ports can reduce job completion times. Blue
line indicates the shortest amount of time to finish all jobs.

Multi-rooted trees are a popular topology for data-center networks [ZMSG19].
They provide large bisection bandwidth and a large number of paths be-
tween hosts in the network [AFLV08]. Effectively balancing traffic over those
paths is a critical ability to fully utilize path diversity and bandwidth. A
common strategy to load-balancing is minimizing the maximum link utiliza-
tion [KHK+16, CKS14, AED+14, KHG+16, HTB+20, ZTZ+14, SSIF13, BAAZ11,
AFRR+10, BK19, LZW+20, VPA+17], i.e., keeping links approximately equally
loaded. The goal of this strategy is twofold: 1) reduce congestion, and as a conse-
quence 2) reduce flow completion time. Where the latter is the actual objective of
those strategies. Minimizing the maximum link utilization is thus an intermediate
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CHAPTER 1. INTRODUCTION 8

optimization objective with the goal to improve FCT. The online nature of the
problem, i.e., balancing flows without the knowledge of all flows, as well as the
heavy tailed nature of flow and flowlet sizes [HRA+15] can lead to detrimental
effects, though [FW00, Alb09]. Especially in the presence of coflows, a set of flows
where the completion time of the slowest flow, the so-called makespan [Alb09], is
important. Coflows arise frequently in data-center workloads [CZS14].

Consider the example in Fig. 1.1. Fig. 1.1a shows the order in which ten flows
to the same destination arrive almost at the same time at a switch. The size
of the rectangles in Fig. 1.1 indicates the volume of each flow: Nine flows are
small and one flow is larger with four times the volume. A mix like this is not
uncommon in data-center networks [AED+14]. The switch balances the flows as
they arrive over its four ports. The switch does not know about flows in advance,
i.e., operates in an online scenario. Minimizing the maximum link utilization with
e.g., the least loaded first heuristic [Alb09] can result in the situation in Fig. 1.1b.
The large flow is assigned together with three small ones to the same port. This
assignment causes two problems: 1) The large flow can collide with the small flows,
resulting in congestion and packet loss similar to ECMP. 2) There is no utility in
finishing small flows very fast if the application depends on the completion of the
large flow as well [CCBA16]. A better solution in this situation would be deliberate
imbalancing of load. A strategy well known in the field of online scheduling [Alb09].
Imbalancing can result in the situation in Fig. 1.1c. The small flows are distributed
unequally over the ports of the switch. As a result, the large flow collides with
only one small flow, and the time until all flows are finished is reduced compared
to Fig. 1.1b.

Recent in-network load balancing techniques [KHK+16, KHG+16, AED+14,
HTB+20] miss this opportunity and can suffer from collisions and stragglers. Tech-
niques that specifically optimize for FCT [AYS+13, CLCL18, AHLPMY+19] reduce
congestion, but in the presence of coflows result in stragglers. Flow scheduling tech-
niques that specifically target the coflow case either require advanced knowledge
about coflows [ARN+18, CZS14, BKA+20, CCBA16] or complex control planes to
detect coflows at runtime [CS15, ZCY+16].

The challenge in maintaining an imbalanced schedule, i.e., keeping links differently
utilized, lies in the fact that to achieve this, the size of flows must be known at
decisions time. Advanced knowledge of flows cannot be assumed common knowl-
edge, though [DJK+19]. Not even the sending application might know the exact
size of a transmission ahead of time. An in-network load balancer that wants to
maintain an imbalanced schedule in order to reduce the risk of congestion and
stragglers in co-flows must thus not rely on advanced knowledge of flow-sizes.
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This thesis proposes IMBAL, an in-dataplane load balancing technique that keeps
links purposefully imbalanced and does not require a-prior knowledge of flow sizes.
In contrast to existing work, IMBAL optimizes for makespan, i.e., IMBAL treats
all flows in the network as belonging to one large coflow and optimizes for makespan
instead of FCT or maximum link utilization. IMBAL operates on the granularity
of flowlets and uses a distance-vector like protocol to distribute global network
state through the network. IMBAL is implemented and evaluated in the network
simulator ns-3 and compared against HULA [KHK+16] and ECMP. Simulations
show that IMBAL reduces congestion as well as FCT by up to 50 % on real world
traffic traces.

Contributions of this thesis are:

1. This thesis proposes the imbalancing of traffic as an alternative objective to
existing load balancing techniques that optimize for maximum link utiliza-
tion.

2. IMBAL is designed in this thesis. IMBAL is a load imbalancer that does
not require prior knowledge about flow-sizes and can be implemented on
programmable network devices.

3. In the scope of this thesis, IMBAL is implemented in the network simulator
ns-3.

4. The effectiveness of IMBAL is shown in large scale simulations and com-
pared against state-of-the art in-network load balancing algorithms of similar
complexity.

This thesis is organized as follows: Sec. 2 gives background on data center char-
acteristics and challenges online scheduling, different objectives and their relation
to networking. Further, Sec. 2 introduces HULA, a hop-by-hop utilization-aware
load balancing architecture. Sec. 3 discusses related work. Sec. 4 gives an overview
over current scheduling techniques employed in data center networks. Sec. 5 de-
tails the implementation of IMBAL. Sec. 6 compares IMBAL against HULA and
ECMP in large scale simulations on real production workloads. Sec. 7 concludes
this thesis.



Chapter 2

Background

This chapter contains information necessary to understand the motivation of this
thesis. Section 2.1 introduces data centers regarding its typical characteristics.
Section 2.2 introduces challenges in traffic engineering for data center networks.
Section 2.3 defines online scheduling in general. Section 2.5 explains of HULA,
which provides the basic structure and functionality for the IMBAL scheduling
algorithm proposed on Section 5.2 in the context of network scheduling.

2.1 Data Center Characteristics

A data center network refers to a cluster of servers. Those servers transmit a large
amount of data. To avoid single point congestion, data center design takes advan-
tage of multiple paths between its hosts. Due to the high traffic demands, data
center networks feature a large bisection bandwidth. A popular architecture are
multi-rooted trees like FatTrees [AFLV08]. Figure 2.1 shows a FatTree topology.
The topology consists of so-called pods and a spine. A pod, consists of ToR and
aggregation switches. ToRs connect to end-hosts. aggregation switches provide
connectivity within the pod. The spine interconnects the pods.

The specific traffic demands depend on the application. Figure 2.2 shows two
flow size distributions for web and data mining workload [KHK+16], optained
empirically from production datacenters. Of note is the heavy tailed distribution
of the flows: most flows are small, while a small number of large flows contribute
to a substantial portion of the traffic.

10
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Figure 2.1: FatTree for k=4
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Figure 2.2: Empirical traffic distribution in data center networks [KHK+16]

2.2 Challenges in Data Center Traffic Engineer-

ing

Existing data center topologies struggle to provide enough capacity between the
servers they interconnect [BAAZ11]. Since current data centers are built from high-
cost hardware, the higher tiers of the tree are oversubscribed to keep the total cost
low. Thus, under heavy traffic workloads, data centers are prone to congestion.
Data center traffic is volatile and bursty [AED+14]. Therefore, mechanisms aim-
ing to distribute load on the network should be higly responsive in its reaction
to congestion. This is in contrast to traffic engineering techniques designed for
internet service providers, which function on coarser timeframes [BAAZ11].

Network mechanisms providing should be oblivious to the transport protocol at
the end-host (TCP, UDP, etc). Specifically modification of TCP should be avoided
because of deployment complexity.
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2.3 Online Scheduling

In online scheduling, jobs arrive one by one over time as a sequence I = J1, ..., Jn.
Upon arrival, each job must be scheduled to one of m machines without prior
knowledge of subsequent jobs. For each job, the processing time pi is known.

This thesis interprets load distribution on a network as a form of non-preemptive
online scheduling. For this thesis, packet flows are treated as jobs which need
to be distributed among paths in the network. Ports of switches are treated as
machines to which arriving packets are scheduled. For more specifics on this, see
Section 5.1. Scheduled jobs cannot be stopped or paused [Alb09], which is inline
with networking needs: every switch needs to schedule packets as they arrive to
avoid packet drops due to high queue sizes.

2.4 Makespan minimization

The goal of makespan minimization is minimize the completion time of the last
job that finishes in the schedule. For online scheduling, this assumes immediate
and permanent allocation of a job to a machine [Alb09].

The optimal assignement OPT of the jobs seen in Fig. 2.3, where size is propor-
tional to needed processing time, can be seen in Fig. 2.4.

Figure 2.3: Sequence of jobs in order of arrival.

In online scheduling, the goal for makespan minimization algorithms is to get
the worst case performance as close as possible to the OPT . The difference in
performance is denoted by the competitive ratio [FW00].

Makespan minimization under the restrictions mentioned above for online schedul-
ing was tackeld by Graham [Gra66]. His LIST algorithm operates as follows:

Let load of a machine be the sum of processing times of all jobs currently assigned
to one machine. Then, simply assign every new arriving job to the least loaded
machine. This results in a competitive ratio of 2− 1

m
[Alb09].
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Figure 2.4: Optimal assignment of the jobs to 4 machines.

2.5 HULA

HULA [KHK+16] is an approach which aims to solve the challenges outlined in 2.2
by distributing path utilization information over the network. Each switch uses
this information to make local routing decisions. Every switch maintains a list of
best ports for every destination based on least path utilization.

As in HULA, information regarding the reachability and path utilization is trans-
mitted via probes. Probes are mall packets that inform the switches in the net-
work about the utilization of paths. Every ToR switch sends out these probes to
all connected switches periodically. This way, every switch in the network receives
information by way of reverse propagation.

Each switch thus learns two things: 1) which ToR switches can be reached via each
port, and 2) the utilization of the least utilized path via the neighboring switch.

Availability can be learned via time-outs. If a switch did not receive a probe from
a ToR over a port for some time, the switch assumes that no path to that ToR
exists. This way, a failing link is recognized and traffic will be rerouted at the
switch. And information about the now potential higher load on the remaining
load will be propagated throughout the network.

An advantage of this approach is the abstraction of path loads to ports: every
switch only stores the next best hop for each destination, keeping the forwarding
state to a minimum.



CHAPTER 2. BACKGROUND 14

2.5.1 Flowlet based forwarding

HULA employs flowlet routing. Flowlets are parts of flows which are packets
with an inter-arrival-time smaller than a specified threshold in the order of the
network round trip time [KHK+16]. Flowlets based routing is meant to allow for
a more fine-grained load-balancing than flow based routing, while still minimizing
packet re-ordering at the receiver [KKSB07]. To accomplish flowlet based routing
in HULA, every switch needs to maintain a next best hop for that flowlet as well
as a timestamp indicating the last arrival of a packet for every flowlet.

When a non-probe packet arrives (e.g. data or TCP control packets), HULA
switches firstly check if there is an active flowlet for that packet. If there is, its
output port is used for forwarding and its timestamp is updated. If there is not,
new entries for both are generated with the hash of the flow as a key. This way,
packets belonging to one flowlet get routed on the same output port for every
switch, until the inter-arrival gap crosses the threshold. In this case, even if more
packets for the same flow need to be routed, the risk of reordering is minimized.

2.5.2 Optimization objective

The forwarding decisions in a data center network can be interpreted as an online
scheduling problem. For HULA, we view data flows as jobs and the admissible
output ports on a switch as machines. HULA can be seen as a form of Grahams
LIST algorithm: new flowlets are assigned to the least loaded output port. ”Least
loaded” in this case means ”leads to a path with the least expected utilization”.
The information for the least expected utilization is propagated to each switch
in the form of small pakets called probes. HULA switches schedule packets on
the port with the lowest path utilization based on the information provided by
incoming probes over all paths. This way, routing utilizes multipath diversity and
adapts to changes in traffic load, at the cost of a small overhead (probe packets
distributing the information).



Chapter 3

Related Work

Hedera [AFRR+10] uses a centralized flow-scheduler that re-assigns large flows to
less congested paths, thus implementing a similar strategy as IMBAL. In con-
trast to Hedera, IMBAL is distributed and operates at millisecond granularity.
MicroTE [BAAZ11] estimates traffic matrices and uses a bin packing heuristic
to reduce maximum link utilization, unpredictable traffic is routed with ECMP.
FastPaths [BDS+21] designs a new routing scheme based on flowlets for non-clos
data-center topologies. Flier [KS17] implements load balancing in direct connect
data-centers in a host based approach, where host decide whether to forward pack-
ets along longer or shorter paths. SPAIN enables multi-pathing in arbitrary topolo-
gies by computing trees and mapping those to VLAN tags. Trees are computed
over pre-selected paths. Planck [RSD+14] implements a measurement system that
enables milisecond scheduling decisions without programmable hardware.

In contrast to central schedluers[AFRR+10, BAAZ11] is IMBAL distributed. IM-
BAL is not designed for arbitrary topologies but targets Clos Networks. Further,
IMBAL targets makespan minimization.

Chiesa et al. show the conditions under which ECMP is optimal [CKS14].

Flux [DJK+19] estimates flow sizes at line rate in data center networks. They show
that advnaced knowledge of flow-sizes is generally not a plausible assumptions, but
that due to the repritive structure of jobs in DCs flow sizes might be learned.

RCP [DM06] is a protocol that approximates processor sharing in the presence of
feedback delay. The authors argue why FCT is the metric one should care for.

15
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3.1 In-Network Load Balancing

Spotlight [ACX+20] implements a distributed L4-load taking the end-host uti-
lization into consideration. The goal is FCT minimization, the objective is
the even distribution of loads over end-points. CONGA [AED+14] uses per-
path congestion information to forward flowlets over the currently least utilized
path. HULA [KHK+16] takes a similar approach and improves scalability, per-
formance and deployability through better disemination of congestion information
in the network, per-hop forwarding decisions and programmable hardware. CON-
TRA [HBC+20] generalizes HULA to arbitrary topologies and provides a high-level
language to easily implement forwarding policies such as least loaded first, WCMP,
etc. [HTB+20] implements adaptive WCMP, where weights are updated adap-
tively to the current load situation at line rate using programmable data planes.
TCP-Path [AHLPMY+19] uses SYN-flooding for each new flow to discover the
currently fastest path in the network. The SYN-packets determine the currently
fastest path between two end-hosts. FlowDyn [BK19] improves flowlet based load
balancing approaches by adapting the flowlet threshould through measurements
in the network, improving the trade-off between minimizing packet reordering and
improving through frequent switching. PDQ [HCG12] implements a distribted al-
gorithm that allows switches to collaboratively gather information about flows and
converge to a stable allocation decision, as well as allow preemption of jobs, i.e.,
switchovers. PDQ is able to implement scheduling strategies such as SJF or Ear-
liest Deadline First. FLARE [KKSB07] forwards bursts of packets, i.e., flowlets in
WANs. CLOVE [KHG+16] pulls load-balancing into the network hypervisor and
balances flows over available paths using different source ports. Thus, hardware
in the network can be left unchanged. PLB [LZW+20] uses only partial probing of
the network topology, thus reducing probing overhead. LocalFlow [SSIF13] opti-
mizes maximum link utiliziation by aggregating traffic to one host on a switch and
then splitting this traffic over the outgoing ports. LetFlow [VPA+17] investigates
in detail the advantage of flowlet switching and design a simple randomized load
balancer based on those insights. WCMP [ZTZ+14] adapts the sending rates of
ECMP to reflect asymmetries in the topology.

IMBAL is similar in that it provides in-network based load balancing and uses
probing to distribute global load information in the network. In contrast to pre-
vious in-network based load balancing schemes targets IMBAL makespan mini-
mization and for this purposefully imbalances traffic over available links. Previous
appraches, implicitly or explicitly, optimize for maximum link utilization.
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3.2 Co-Flow scheduling

In Sincronia [ARN+18], applications inform the network fabric about their co-
flows. The network fabric uses this information to sort and schedule co-flows and
the constituting flows using priority queuing in order to minimize co-flow com-
pletion time. Varys [CZS14] uses a centralized co-flow scheduler and knowledge
about co-flows to pace flows in a co-flow such that every flow finishes at the same
time as the slowest flow in the co-flow, using available resources more efficiently.
Aalo [CS15] does not assume prior knowledge about co-flows and uses a central-
ized entity to estimate co-flows, and distributed entities that assign rates and
priorities based on those estimations. Aalo approximates least attained service
first strategy. CODA [ZCY+16] uses a complex control plane to detect co-flows
without prior knowledge, i.e., at runtime. pCoFlow [BKA+20] maintains flow-
affinity then re-priotizing coflows to take the packets in flight into account with
the goal to reduce packet-reordering caused by priority changes with multiqueue
switches. Karuna [CCBA16] improves pFabric by prioritizing flows in such a way
that they finish just before their deadline, thus leaving room for non-deadlined
flows, improving overall network utilization.

IMBAL is similar to approaches in co-flow scheduling in that IMBAL does not
optimize for completion times of individual flows. IMBAL also allows some flows
to take longer than strictly necessary. In contrast to co-flow scheduling approaches,
IMBAL considers all flows in the network to belong to one big job, i.e., IMBAL
does not have an explicit notion of co-flows. Further, IMBAL does not require
any prior information on flow-size, co-flow characteristics and does not use rate
limiting.

3.3 Host-based load balancing

DCTCP [AGM+10] is a variant of TCP designed for data-centers that uses the Ex-
plicit Congestion Notification (ECN) to indicate congestion. Sources use the ECN
bit to estimate congestion and adjust sending rate. HULL [AKE+12] improves
DCTCP with pacing and by leaving head-room on switches, i.e., not fully utilizes
links, in order to not hold up small latency sensitive flows. pFabric [AYS+13] uses
strict priority queueing, where end-hosts indicate the priority of traffic in packet
headers. Sending rates are lazily adjusted to avoid packet loss. PIAS [BCC+14]
uses MLFQ and sieving to approximate shortest job first without prior information
on the volume of flows. Packets are tagged with priorities on the end-hosts based
on the amount of already-send traffic. The objective of PIAS is to minimize flow-
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time, i.e., FCT of individual flows without notion of dependency between flows.
AuTO [CLCL18] uses deep reinforcement learning to learn and adapt thresholds
for sieving used in PIAS. DCMPTCP improves multipath TCP for use in the
data-center environment. DCMPTCP does not use multiple flows for small flows
and intra-rack traffic. DCMPTCP further synchronizes ECN between sub-flows,
i.e., adapting sending rates of multiple sub-flows in step. pHost [GNK+15] decou-
ples the network fabric from scheduling decisions by allowing end-hosts to make
per-packet scheduling decisions. QJump [GSG+15] uses rate limitation and strict
priority queueing to reduce tail latencies. Presto [HRA+15] splits flows into small
flow-cells and extends packet-reordering capabilities at end-hosts, enabling packet
spraying and thus reaping optimality condition of ECMP. Homa [MLAO18] uses
receiver driven scheduling of flows, where receivers tell the senders priorities, when
to send, etc. Fastpath [POB+14] implements a central scheduler that assigns to
every packet in the network the path it should take and the time at which it
should be transmitted. Fastpath reduces queue occupancy and reduces TCP re-
transmissions. Raiciu et al. [RBP+11] evaluate in depth the usability of MPTCP
in DCs and propose small modifications to DC networks to improve the usability
of MPTCP in DCs. ICON [RCAV19] assumes knowledge about applications and
uses packet pacing at the sender to avoid packet drops due to congestion in incast
scenarios. ResQueue [RV20] uses flow-size to prioritize flows, and also prioritizes
re-transmitted packets, resulting in better FCTs in in-cast scenarios, where also
re-transmitted packets get frequently dropped due to collisions. ALB [SWFX19]
uses latency information to assign flows to paths. Flows are assigned to paths by
choosing among a specific set of ports that result in the desired allocation with
ECMP. SPLB [XYZ+20] scoutes for each packet the best possible path to main-
tain packet order. The reserve a part of the bandwidth for each link for stand-in
packets that scout for the actual data packets. DeTail [ZDM+12] uses cross-layer
information to reduce long tail FCT.

In constrast to host based methods is IMBAL solely located in the network. Fur-
ther, IMBAL does not use priority queueing or rate limiting. IMBAL targets
makespan minimization, while most of the previous work in this area focuses on
shortest job first, not taking the co-flow nature into account. IMBAL is orthog-
onal to work that targets incast scenarios. IMBAL can be combined with those
approaches. Further, IMBAL could be implemented with approacehs such as
CLOVE.



Chapter 4

Scheduling in datacenter networks

This Chapter summarizes currently explored scheduling methods in data center
networks.

4.1 Shortest Job First

To optimimize FCT, traffic engineering algorithms in data center networks approx-
imate shortest job first algorithms (SJF), that are known to be optimal for the
flow-time objective. Examples are AuTO [CLCL18], PIAS [BCC+14] and others.

The problem with SJF optimization: Long flows get starved. Jobs can consist of
coflows, meaning a group of flows which are only considered finished on completion
of the last flow. In a scenario like this, it is not relevant if all short flows are finished
but a long one is still pending. So, only focusing on FCT of individual flows can
be suboptimal[CZS14].

4.2 Max Link utilization

Another frequent objective is the minimization of the maximum link utilization.
Examples are HULA and CONGA [AED+14] that implement a greedy algorithm
of admitting flows to the currently least loaded path. Other algorithms such as
ECMP, Presto and WCMP implicitly optimize for this, other schemes sucha as
MicroTE [BAAZ11] directly optimize for it with an LP.
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On an already loaded switch, equally loaded paths are the worst case for LIST
algorithm if a large flow needs to be scheduled. This also leads do collissions of
flows.

4.3 Makespan Minimization

For makespan minimization mentioned in Section 2.4, there is not yet direct cor-
respondence for data center networks. The closest is co-flow optimization. Coflow
scheduling tries to optimize makespan for a specific set of flows, namely those of
one application. The difficulty lies in knowing these coflows, their sizes, and all
other coflows etc. It is impossible to know all of this in advance. Learning it at
runtime is difficult and requires complex control planes. A possible solution is to
treat all flows as one huge coflow.



Chapter 5

Design and Implementation

This Chapter describes the design and implementation of IMBAL. Section 5.1 de-
scribes the MR algorithm, which provides the scheduling scheme used in IMBAL.
Section 5.2 explains the general structure of IMBAL, while Sections 5.4 and 5.3
go more in depth on its scheduling and probing mechanisms. Finally, Section 5.6
explores possible realization problems due to computational complexity.

5.1 IMBAL scheduling

(a) Order of arriving jobs.

Time

m 1

m 2

m 0

m 3

(b) Load Balancing.

Time

m 1

m 2

m 0

m 3

(c) Load Imbalancing.

Figure 5.1: Imbalancing load over ports can reduce job completion times. Blue
line indicates the shortest amount of time to finish all jobs
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MR is an optimisation approach for online scheduling as described in 2.3. The MR
algorithm [Alb09] is a scheduling algorithm which aims to improve on the Grahams
List algorithm (see Section 2.3) for scheduling. The List algorithm schedules jobs
on the least loaded machine, which is the scheduling approach employed by HULA.
In contrast, MR aims to maintain an imbalanced schedule, which improves the
competitive ratio for online scheduling in comparison to LIST. This improves
worst case performance for online job scheduling. An example for a scenario were
an imbalanced schedule is beneficial can be seen in Figure 5.1: Shown are several
jobs (5.1a) arriving almost at the same time, but chronologically from left to
right. In this example, there are 4 possible machines to assign the new flows
to. As described in 2.3, the job sizes of future jobs are unknown. Therefore, the
theoretical optimal assignment of jobs to minimize makespan, as shown by the
blue line, is impossible to achieve reliably. The assignment of jobs to the least
loaded machines can lead to a the subotpimal distribution as shown in 5.1b. If the
scheduling mechanism attempts to keep an imbalanced schedule, the assignment
could look like 5.1c. Here, the worst case has been avoided be leaving one machine
lightly loaded, allowing the large job at the end to be processed faster.

Algorithm 1 shows the job assignment process of MR. MR operates on a list
of machines M that are sorted ascending based on their load, a list of already
scheduled jobs J , and produces a scheduling decision for a newly arriving job jt.
The job jt is either scheduled on the least loaded machine, or on the machine with
the (k+1)th load. MR first calculates the average load λ on all machines in Line 4
of Algorithm 1. MR then compares the load of machine 2k+1 to the average load
to decide if the schedule is imbalanced. If the corresponding condition in Line 5
is true, the schedule is imbalanced and the job is scheduled to the least loaded
machine. If the condition is false, then the schedule is not imbalanced, and MR
considers to assign job jt to the machine with the k+ 1st smallest load. To decide
this, MR calculates the average load of all jobs including jt in Line 8, and the
load lk+1 on machine M [k + 1] if jt would be assigned to it in Line 9. MR then
compares lk+1 to L in Line 10. If the condition is true, then the job is placed on
machine k + 1. If the condition is false, then the assignment is deemed risky and
the job is placed on the least loaded machine [FW00].

Related to data center traffic engineering, this algorithm could be used on switches
to schedule flows while taking unknown future flows into account. If the size of
flows is treated as jobsize, a mix of jobs as shown in 5.1 is not uncommon in
data-center networks [AED+14].

Due to the imbalance in the schedule, IMBAL can assign larger flows to less
utilized links, thus avoiding collisions of flows that occur with the minimization
of the maximum link utilization. IMBAL achieves this at the cost of potentially
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Data: Machines sorted based on load
M ← [m1 . . . ,mn | load(mi) ≤ load(mi+1)]; Already scheduled Jobs
J ← [j1, . . . , jh]; Job jt to schedule

Result: Machine to schedule jt on.

1 c← 1 +
√

1+ln 2
2

;

2 k ←
⌊
n · 2(c−1)

2−1
c

⌋
+ 1;

3 α← 2c−3
2(c−1) ;

4 λ← 1
k

∑k−1
i=1 load(M [i]);

5 if λ ≤ α load(M [2k + 1]) then
6 return M [0];

7 else

8 L← 1
n

(∑h−1
i=1 load(J [i]) + jt

)
;

9 lk+1 ← load(M [k + 1]) + load(jt);
10 if lk+1 ≤ cL then
11 return M [k + 1];

12 else
13 return M [0];
14 end

15 end

Algorithm 1: Pseudocode for MR algorithm.
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delaying shorter flows compared to the flow time objective. However, this draw-
back is offset in part by the existence of coflows that benefit from the assignment
behavior.

Due to the reliance of IMBAL on the load of a job, IMBAL cannot readily be
used as scheduling algorithm for flows, since the volume of flows is generally not
available. Further, IMBAL is designed for individual machines. The utilization
of a port on a switch might not correctly reflect the utilization of the path. A
lowly utilized port can be the beginning of a path with a heavily congested link.
Section 5.2 will explain how IMBAL can be used as load-imbalancer despite those
restrictions.

5.2 IMBAL design

HULA as described in [KHK+16] provides the basis for the IMBAL extensions
described in 5.1.
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Figure 5.2: System diagram of IMBAL

Figure 5.2 shows the system diagram of IMBAL. Every switch in IMBAL has
a path load table, a flowlet table and the logic that makes forwarding decisions.
The rows of the path load table are indexed by ToR IDs. The columns of the path
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load table correspond to the neighbors of a switch. Each entry in the path load
table contains the load of the least loaded path with which the destination ToR
can be reached via the corresponding neighbor. The necessary load information
is distributed in the network by means of special probe packets, similar to other
in-dataplane load balancing schemes [KHK+16, HBC+20, LZW+20].

The flowlet table contains for each flowlet the next hop and the flowlet grain size.
The grain size of a flowlet is used to estimate the volume. The estimate is based
on the already sent data. The ToR switch tags the corresponding data packets
with the current grain size. The destination ToR removes the grain-size tag again.

IMBAL adopts the following properties from HULA:

1. Non-clairvoyance. To make IMBAL easily and broadly deployable, IM-
BAL should not explicitly rely on separate data-sources beyond what is
observable on switches. That is, IMBAL should not rely on complex con-
trol planes or estimation techniques to identify traffic characteristics but on
information provided by arriving data packets and probes as in HULA.

2. In-network. IMBAL should not make changes to end-hosts necessary.
That is, IMBAL should not require custom operating systems or kernel
modules on end-hosts in order to operate.

Furthermore, in contrast to HULA, the goal of IMBAL is minimizing
makespan, i.e., optimize for the completion time of a set of flows instead of
the FCT of individual flows. To stay in alignment with the above properties, this
is performed on a per switch basis.

5.3 Probing

Information regarding the reachability is transmitted via small packets to all ToR
switches that need to be reached. In contrast to HULA, which uses port and
path utilization as its metrics, MR operates on load. The probes inform switches
about the load in the network, where load is the sum of bytes scheduled to ports.
The sum of bytes is a rough estimator of processing time, which is used in the
MR algorithm. Since this is unknown in the case of live network balancing, the
used metric will be flow-size. In fact, flow-size is proportional to processing time.
This decision is based on the assumption that every flow is sent with the complete
availiable ToR uplink data rate. Another possibility for load would be the rate
every flow needs, which is not availiable on arrival of the first packet of a new flow.
But MR needs the load of a new job at assignment of this first packet. To have the
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(a) ToR - Step 1. (b) ToR - Step 2. (c) ToR - Step 3. (d) ToR - Step 4.

Figure 5.3: Propagation of probes for one source ToR.

information regarding needed rate per flow would need additional configuration on
the hosts, and is as such not further explored in this thesis. The investigation of
rate as substitute for load is left for future work.

Each switch thus learns two things: 1) which ToR switches can be reached via
each port, and 2) the load of the least loaded path via the neighboring switch.

Availability can be learned via time-outs. If a switch did not receive a probe from
a ToR over a port for some time, the switch assumes that no path to that ToR
exists. This way, a failing link is recognized and traffic will be rerouted at the
switch. And information about the now potential higher load on the remaining
load will be propagated throughout the network.

Information saved in the probe header is:

• torID (32bits): Origin ToR of the probe. Switches match this to their
possible destination ToRs, for which this probe is carrying path utilization
in the opposite direction.

• minPathLoad (32bit): minimum path load of the path the probe took if the
packet were to travel in opposite direction. For this thesis, load corresponds
to flow size.

The probe replication mechanism is shown in Figure 5.3. Probes are broadcasted
to all neighbouring switches, except probes coming from upstream switches only
to downstream switches. This avoids loops and therefore unneccessary overhead
of circulating probes. To further reduce overhead, there is a timeout preventing
replication of probes if there was a probe replicated in a definable threshold.

5.4 Packet scheduling

The scheduling algorithm of IMBAL is similar in structure as HULA 1.

1For the HULA pseudocode, see Appendix A.1
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To implement the MR algorithm described in 5.1, every switch needs to keep track
of several state variables and static Information regarding MR.

Static information needed on every switch:

• MR constants c = 1 +
√

1 + ln(2)/2
α = 2c−3

2(c−1) ≈ 0.46, as described in Section 5.1.

• imbalM corresponds to m in 1: number of machines. In this case: possible
output ports for packets. This has the potential to be variable (e.g. failing
links), but that possibiliy was not explored in this thesis.

• imbalK corresponds to k = b2(c−1)
2−1

c
mc+1 ≈ b0.36mc+1. Number of ports

IMBAL keeps lightly loaded.

• KEEP ALIVE THRESH Timeout after which an entry in pathLoad is obsolete.
Could be used to dynamically alter imbalM if link failures occur.

• FLOWLET TIMEOUT time after which a packet with the same flowHash is
considered a new flowlet.

Variable state stored on every switch:

• txLoad[port] outgoing load per port. Sum of flowsize currently assigned to
this port.

• pathLoad[ToR][port] 2 dimensional array holding minimum path load for
every ToR on every port (this is needed for Imbal calculations). Ports need
to be ordered by current load for every port.

• imbalLambda[ToR] Corresponds to λ as described in 1. Average load on the
imbalK least loaded paths λ = 1

k

∑k
i=1 li

• updateTime[ToR][port] array holding last update time for every pathLoad

entry.

• flowletTime[flowHash] array of last time a packet of a specific flow arrived.

• flowletHop[flowHash] best hop for flow at the time of flowlet start.

• flowletSize[flowHash] tracks how many flowsize is already processed to
be able to subtract the rest if needed.
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1 probe p arrives at switch on port rxPort:
2 if p.bestPathLoad < txLoad[rxPort] then
3 maxLoad = txLoad[rxPort]
4 else
5 maxLoad = p.bestPathLoad
6 end
7 pathLoad[p.torId][rxPort] = maxLoad
8 updateTime[p.torId][rxPort] = currentTime
9 p.bestPathLoad = minm∈M(pathLoad[p.torId][m])

Algorithm 2: IMBAL probe processing

If the received packet on a IMBAL switch is a probe, it is handled fundamentally
different than other types of traffic such as data packets. Probe processing is
described in Algorithm 2.

In Line 3, the switch checks if the load the switch assigned to port rxPort is
larger than the load that is reported in the probe. If this is the case, then the
switch updates the load in the probe with the load on its port (see ). If the
assigned load is smaller than the load reported in the probe, the switch retrieves
the minimum load it has stored for the ToR ID in the probe on that port. All
pathLoads are saved, so no comparison needs to be made (see line 7), since the
calculation of the next best hop needs information regarding all paths anyway. If
load reported in the probe is smaller than the minimum path load stored on the
switch, then the switch updates its minimum path load for the ToR the probe
originated on and the port. If the minimum path load is smaller than the load in
the probe, then the switch updates the probe with this value. checks if last hop
has higher load than the previous path of probe (similar to HULA with pathUtil
of probe and local utilization).

Line 8: last update time is used to detect if a path is no longer available.

Line 9: Update probe path load to best possible load from this switch.

After this, multicast the probe as described in Section 5.3.

Algorithm 3 variable MR variable
imbalM m

imbalLambda λ
imbalL L
imbalK k

pathLoadDst[i] li
newLoad pt
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Table 5.1: Variables used in the Algorithm 3 corresponding to the MR variables
in Section 5.1

The IMBAL packet scheduling process is described in Algorithm 3. It aims to
combine the flowlet routing of HULA with the scheduling techniques in MR.

1 if currentT ime− flowletT ime[flowHash] > FLOWLET TOUT then
2 pathLoadDst = pathLoad[p.dstToR]
3 imbalLambda = 0
4 for i = 1; i < k; i+ + do
5 imbalLambda += pathLoadDst[i]
6 end
7 imbalLambda = imbalLambda / imbalK
8 imbalL = 0
9 for i = 1; i < m; i+ + do

10 imbalL += pathLoadDst[i]
11 end
12 imbalL = (imbalL + newLoad) / imbalM
13 if imbalLambda > (alpha ∗ pathLoadDst[2imbalK + 1] and

pathLoadDst[imbalK + 1] + newLoad < c ∗ imbalL) then
14 bestHop = port of the imbalK+1 smallest entry of pathLoadDst
15 else
16 bestHop = port where pathLoadDst is minimum
17 end
18 if flowletT ime[flowHash] = 0 then
19 txLoad[bestHop] += newLoad
20 else
21 txLoad[flowletHop[flowhash]] -= (newLoad - lastFlowletSize[flowHash])
22 txLoad[bestHop] += newLoad - flowletSize[flowHash]
23 lastFlowletSize[flowHash] = flowletSize[flowHash]
24 flowletSize[flowHash] = 0

25 end
26 flowletHop[flowHash] = bestHop

27 end
28 p.nextHop = flowletHop[flowHash]
29 flowletTime[flowHash] = currentTime

Algorithm 3: IMBAL forwarding

Line 2: calculate current imbalLambda as described in 5.4. Needs ordered
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pathLoadDst[i] for every destination dstToRId. This calculation is dependent on
the destination Port.

Line 7: imbalL is average load of the machines. MR simply adds all jobs up until
this point. Here, we add all accumulated loads on the paths and add the new job.

Line 11 imbalL denotes the average load on the machines after the current load
is assigned therefore add the newLoad here (e.g. flowSize from oracle).

Line 13: Is schedule imbalanced? The calculation assumes pathLoad is ordered.

Line 18: Update local load. If a flow already exists, already processed part has to
be subtracted from previously assigned port. For this we need to also keep track
of the flowletSize on the switch, if this flow gets reassigned again to keep the
values consistent.

Line 27: Set next hop of packet to next hop for its flowlet and start/refresh timer
for flowlet.

5.5 Flow-size estimation

In order to keep an imbalanced schedule, IMBAL requires the load, i.e., size of a
flowlet as described in Section 5.2. As this information is typically not availiable
when a flowlet has to be routed, some sort of prediction is needed. IMBAL
estimates the flow-size based on the already send volume, similar to [BCC+14].

Flowlets are assigned to one of b bins. These bins are tags for ranges of already
transmitted data for this flow. The predicted flowlet size is the right edge of the
current bin. The example in Fig. 5.4 shows a flowlet which has just crossed the b1
threshold, and is as such assumed to have size b2. Each ToR switch keeps track
of the current bin for every flowlet originating from hosts connected to the ToR.
The bin a flowlet is currently assigned (also called the grain size) is added to
packets of the flowlet. Intermediate switches can the use this tag to estimate the
remaining flowsize as bi+1 − bi, which is then used to make forwarding decisions.
If a switch registers a bin change, the corrsponding flowlet gets reassigned: the
load corresponding to its former bin size gets removed from its assigned port, and
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IMBAL is used to newly assign the flowlet with the right edge of the new bin as
estimated load.

Bin 1 Bin 2 Bin 3

max predicted sizemin predicted size
b1 b2 b3

sent bytes

Maximum flowlet volume

Predicted volume

Figure 5.4: Sieving Bins

Sensible bin sizes are subject to configuration, but at least an accurate estimate
of the maximum flowlet size is needed. The maximum flowlet size can be used
as a maximum estimated flow-size, meaning the right edge of the highest bin.
Since flowlets get reassigned on bin change, this could lead to unwanted packet
reordering, which was not accounted for in this thesis. In our experiments, a small
number of bins with exponentially growing bin sizes are used, see Section 6.4.

5.6 Complexity differences between HULA and

IMBAL

Chapter 5.3 in [KHK+16] states the needed operations of HULA in P4. In ad-
dition to the staless operations such as probe header adjustments based on link
utilization, HULA needs to keep track and modify several stateful lists:

• Minimum path utilizations, size ∝ numberofdestinationToRs

• The next best hop per destination,

• Last update time per destination

• Next hop per flowlet

• Last time a flowlet was routed

These lists need to be compared to header fields and replaced if the algorithm
meets criteria described in section 2.5.

IMBAL handles probes in a similar way, but instead of only saving the min-
imum path utilization per destination, this algorithm needs to keep track of
the load per destination per possible output port, so the size of this matrix is
∝ (#destination ToRs) ∗ (#output ports).
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The computational cost is also higher: at the moment of assigning a new flowlet,
IMBAL needs the list of loads for its particular destination node per output port
sorted by value. In the current implementation this sorting is done directly before
routing a new flowlet, but on an actual realization on switches, sorting after each
relevant probe should be considered. This has the potential to decrease the routing
time for data packets.

Additionaly, the routing decision requires several computations and temporary
values, as described in 5.1.



Chapter 6

Evaluation

This Chapter evaluates the IMBAL ns-3 implementation in comparison to HULA
and ECMP. In Section 6.1, relevant research questions for this thesis are intro-
duced. Section 6.2 describes the chosen simulation scenarios, while Section 6.3
and Section 6.4 describe the results for clairvoyant IMBAL and IMBAL with
sieving respectively.

6.1 Research Questions

With the evaluation this thesis wants to investigate the following questions:

1. How does IMBAL, i.e., makespan minimization compare to HULA, i.e.,
load balancing?

2. How does IMBAL behave in larger network topologies?

3. What is the difference between clairvoyant and non-clairvoyant scheduling,
i.e., between sieving and perfect flow-size information?

To evaluate those questions, we use the flow completion time (FCT). This is the
time between the first packet of a flow is send, and the last packet of a flow is
received, as performance metric. In addition to evaluating the average FCT as
is done in previous work [KHK+16], we also investigate the distribution of FCT
based on flow-size.

33
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6.2 Simulation Scenario

This Section describes the chosen evaluation scenarios regardin chosen parameters
(Section 6.2.1) topology (Section 6.2.2) and traffic (Section 6.2.3).

6.2.1 Routing algorithms and parameters

HULA is a close alternative to IMBAL and targets the minimization of the max-
imum link utilization as described in Section 2.5. HULA forwards flowlets along
the currently least utilized path. As HULA provides the basic mechanisms of traf-
fic routing for IMBAL, all evaluation is done in comparison to a reimplementation
of HULA.

Free parameters in our simulation are the flowlet gap, i.e., the time between two
packets of the same flow that separates two flowlets, the probe frequency, and the
number of bins as well as the distribution of the bins over flow sizes. Following
previous work [KHK+16], the order of the flowlet-gap is set to be in the order of
the network RTT to minimize packet re-ordering at the receiver. For this thesis, a
value of 10ms is used in our experiments. We set the probe frequency for HULA
and IMBAL to 5ms, as to not overwhelm the network with overhead traffic.
To keep the evaluation results betwen IMBAL and HULA comparable, probe
frequency and flowlet gap were chosen the same for all scenarios.

Where ECMP is used, it is flow-level ECMP, i.e., the next hop of a flow is de-
termined by a hash over the five tuple source IP, destination IP, source port,
destination port and protocol.

To showcase the full potential of load imbalancing, IMBAL is evaluated addition-
ally in a clairvoyant setting. In the clairvoyant setting, an oracle provides the size
of each flow during arrival. Thus, sieving for the flow-size is not necessary. Aside
from the flow-size no additional information is provided out-of band.

6.2.2 Topology

Since load imbalancing only works for more than three machines, the smallest
topology used in this analysis is the k = 8 FatTree. Figure 6.1 shows one pod
of a k=8 FatTree. Traffic coming from a host (red) arriving on its ToR switch
(green) can be routed to one of 4 output upstream output ports if the destination
is not connected to, which all have a valid route to all other hosts in this topology.
FatTree sizes in this evaluation go up to k ∈ {8, 10, 12, 14, 16}, meant to show
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scalability of IMBAL. For this thesis, all the scenarios have a link capacity of 10
Mbps. This is meant to keep simulation times to a manageable level.

Server

Switches

Figure 6.1: One Pod of a k=8 FatTree

6.2.3 Traffic

This thesis uses an incast scenario, where one pod receives traffic from other pods.
Flows arrive based on a poisson arrival process. Communication pairs are sampled
uniformly at random. The arrival process is tuned to achieve a specific expected
load in the receiving pod. As traffic distribution, flowsizes were sampled from
production traces. Figure 6.2 shows the CDF of the used distribution [AED+14],
denoted by the blue line. Of interest is the heavy tailed nature of the workload as
described in 2.1.
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Figure 6.2: CONGA enterprise workload

Initial simulations were conducted with UDP as transport protocol. As this means
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no retransmission of lost packets or other traffic control present in TCP, this sce-
nario provides a basic overview over the potential capabilities of IMBAL.

For TCP, every flow establishes a seperate TCP connection between one of the
hosts in the destination pod and a random source host in another pod.

6.3 A priori Flow Knowledge

As described in Section 5.2, initial simulations were conducted with clairvoyance
over flow sizes for IMBAL. In practice, the availability of this information is prob-
lematic [DJK+19]. In general, advance knowledge of flow sizes is not a plausible
assumption. Nevertheless, assuming a priori knowledge over flow sizes provides an
overview over potential performance improvements.

6.3.1 UDP traffic

Figure 6.3 shows the performance of IMBAL compared to HULA for a k=8
FatTree. Subfigure 6.3a shows the average flow completion time for loads between
20% and 90%. While the average flow completion time is about the same for
IMBAL and HULA for 20% network load, if the network is loaded more than
30%, differences start to show: on average, for this scenario, IMBAL has roughly
two times faster average flow completion time than HULA.

Subfigure 6.3b shows the corresponding error rate as a percentage of packages lost.
While at low loads, IMBAL and HULA are about equal. But at loads higher
than 70%, HULA lost more than twice as much packets.

Both of the above results point to a better congestion avoidance of IMBAL in
this scenario.

Figure 6.4 shows violin plots over all flow completion times for a specific load
level. The average flow completion time is marked with a star. The median flow
completion time with a bar. Of note is the roughly equal median flow completion
time except in the highest loaded scenario. Especially for loads higher than 50%
the number of flows with a higher flow completion time than 200ms surpasses the
number of flows with IMBAL scheduling.

To show the scalablity of IMBAL, Figure 6.5 shows the same metrics as Figure 6.3
but for a larger network size of k=12. Subfigure 6.5a shows the average flow com-
pletion time for loads between 20% and 90%. While the average flow completion
time is about the same for IMBAL and HULA for up to 40% network load, if the
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Figure 6.3: Average flow completion times (a) and error rates (b) at different loads
for UDP and a k=8 FatTree with 30 seconds Simulation time
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Figure 6.4: Flow completion at different loads for a k=8 FatTree with 30s simula-
tion time

network is loaded more than 50%, IMBAL flow completion times are 50% smaller
on average compared to HULA.

Subfigure 6.5b shows the corresponding error rate as a percentage of lost packages.
While at low loads, IMBAL and HULA are about equal. But at loads higher
than 70%, HULA lost more than twice as much packets.

Another metric to evaluate, especially for UDP, is packet loss distribution per flow
depending on flow size. Figure 6.7 shows a heatmap for this metric. The x-axis
shows the number of sent packets per flow, while the y-axis shows the amount of
packets received for each of those flows. A lighter color indicates that a larger
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Figure 6.5: Average flow completion times (a) and error rates (b) at different loads
for a k=12 FatTree with 30 seconds Simulation time
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Figure 6.6: Flow completion at different loads for a k=12 FatTree with 30s simu-
lation time

number of flows fall that belong to the corresponding bin. If no packets would
be dropped, the plot would show a diagonal line. In case of packet loss, the
corresponding entry is translated downwards. Figure 6.7 reflects the heavy tailed
flow size distribution. The bright color at the lower left indicate a large number
of small flows. The bins corresponding to larger flows are darker, indicating fewer
flows. Figure shows specifically lost packets for higher flows, as the resolution of
the graph is not high enough to show meaningful data in the bottom left corner.
For HULA, quite a few packets in the flow size range of 50 to 250 packets get lost,
while IMBAL distribution is closer to the case of no losses. Even more apparent
becomes the discrepancy for the larger flows. While IMBAL is able to route more
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than 75% percent of packets per flow in most cases, HULA has packet drops and
very few completely transmitted flows for this heavily loaded scenario, specifically
regarding large flows.

The data in Figure 6.7 therefore shows the potential advantages of keeping an
imbalanced schedule to accomodate for these large flows.
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Figure 6.7: Heat map showing relationship between sent packets to received pack-
ets, for a k=16 FatTree with UDP web traffic at network load 90%

6.3.2 TCP traffic

The dominant transport protocol in data center networks is TCP [AGM+10]. Thus,
the behavior of IMBAL with TCP is important.

Figure 6.8 shows FCTs in the form of a violin plot. The stars denote the average
flow completin time, while the bars denote the median flow completion time. The
results are similar to the results obtained with UDP: While the FCTs are about
the same in scenarios up to a load of 30% with even a slightly higher median,
IMBAL achieves lower FCTs than HULA by approximately 50% with a load of
50% or higher.

Figure 6.9 shows average FCTs (6.9a) for a k=12 FatTree Simulation as well as
the its errorate 6.9b. The average FCT of IMBAL and HULA are close to each
other up to a load of 40%. For higher loads, IMBAL has a up to 60% smaller
FCT compared to HULA. This confirms the results of the UDP simulations. The
behavior of lost packets is similar as well. Figure 6.9b shows the amount of lost
packets. IMBAL has a 30% smaller error rate compared to HULA for load levels
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Figure 6.8: TCP Flow completion at different loads for a k=8 FatTree with 30s
simulation time

up to 40%. The gap keeps increasing with load, reaching almost 400% difference
between IMBAL and HULA. Since TCP re-transmit packets, significant packet
loss indicates increased flow completion times.
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Figure 6.9: Average flow completion times (a) and errorrates (b) at different loads
for a k=12 FatTree with 30 seconds Simulation time

Figure 6.10 shows a violinplot of the individual FCTs for the k=12 Fat-Tree. In
this scenario, HULA has lower average completion times, denoted by the stars,
up to a load of 40%. Furthermore, the median flow completion time remains faster
or equal compared to IMBAL. This behavior can be explained with the different
scheduling strategies. In the lowly loaded scenarios, HULA profits from utilizing
each port equally. IMBAL keeps some ports more loaded than others. Due to the
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low utilization, IMBAL cannot benefit, though. That is the utilization is small
enough that collisions are infrequent for HULA. This changes starting at higher
loads. Collisions become more frequent and IMBAL can benefit from its strategy.
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Figure 6.10: TCP Flow completion at different loads for a k=12 FatTree with 30s
simulation time

Figure 6.11 shows the relationship between sent and received packets per flow for
a very high load scenario of 90%. Ideally, all sent packets would be received. This
means, a diagonal from bottom left to top right would be ideal. IMBAL exhibits
a much tighter spread towards this ideal. HULA drops far more packets across
flowsizes observable at this hexbin grainsize.

Fig. 6.12 shows the send vs. received number of packets for a load of 70 %. The y-
Axis of Fig. 6.12 holds the number of received packets. The x-Axis shows the sent
number of packets. Fig. 6.12a shows that in case of HULA the sender sends more
packets than received by the receiver. In contrast, IMBAL results in an almost
perfect diagonal. IMBAL has fewer packet re-transmissions because of packet loss
compared to HULA. This is expected. Since HULA keeps paths approximately
equally balanced, a larger flow can easily collide with multiple small flows, resulting
in congestion and packet loss. In contrast, IMBAL keeps some ports lowly utilized
on purpose. Once a large flow arrives, IMBAL can then place this flow on the lowly
utilized port, reducing the potential of collisions and congestion in the process.

Figure 6.14 shows the average queue size distribution for destination pod down-
stream queues, for a k=8 FatTree with TCP web traffic at network load 50% for
clairvoyant IMBAL and HULA. IMBAL is less likely to have queuesizes larger
than 10 over time. At the same time, queusizes smaller than 10 are slightly more
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Figure 6.11: Heat map showing relationship between sent packets to received
packets, for a k=12 FatTree with TCP web traffic at network load 90%
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Figure 6.12: Heat map showing relationship between sent packets to received
packets, for a k=10 FatTree with TCP web traffic at network load 70%

likely. Since for our scenario, maximum queue size of the queues on the switch
was 100, additional arriving packets need to be dropped. This leads to the need
for retransmission in the case of TCP, and increases FCT as well as load on the
network. Since IMBAL is less likely to assign flows in a way which causes high
queuesizes, it is more likely to avoid theses problems, which is in line with the
other evaluation results.
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Figure 6.13: CDF showing the queue size distribution over time for destination
pod downstream queues, for a k=8 FatTree with TCP web traffic at network load
50%

6.4 Sieving

As stated in Section 5.2 For binning in sieving, we use two different types of bins:
and equal-width binning on the distribution of flow-sizes (in plots designated as
Siev1) and exponential bin sizes (in plots designated as Siev2). For exponential
only two numbers are required, a minimum and maximum value. For equal-width
binning the empirical flow-size distribution has to be known, which in practice
requires more data gathering effort. With equla-width binning, a histogram is
constructed where each bin contains the same number of samples, i.e., has the
same height, but different widths. We use 5 bins if not stated otherwise.

Figure 6.14 shows the amount of unfinished flows for TCP traffic. For this scenario,
network traffic has been generated for 60 seconds, and flows which have not finished
for 3 seconds after that are treated as unfinished. Clairvoyant IMBAL first starts
to not finish flows at 30% load, and manages to keep unfinished flows an order of
magnitude below HULA. Both sieving bin approaches have less unfinished flows
on average than HULA.

Figure 6.15 shows the results of varying the bin count for exponential bin sizes
to HULA and ECMP normalized to clairvoyant IMBAL performance regarding
average flow completion time. Of note is the strongly smaller flow completion
time of HULA and IMBAL in comparison to ECMP. These results highlight the
importance of correct binning. Fig. 6.15 indicates a soft spot for 6-7 bins. In
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Figure 6.14: Unfinished flows depending on network load 70%

those scenarios, IMBAL with sieving performs almost as well as IMBAL with
flow-size information. For more or fewer bins, the performance deteriorates. If
very few bins are used, the average flow completion time surpasses HULA, since
the estimation of the flow size gets more inaccurate. On very high bin counts, the
current bin for each flow changes more often. Since this triggers a reassignment
of the flow in IMBAL, the advantages of flowlet routing could be undermined.
5 bins lead to the smallest flow completion time, and are used for the following
simulation.

Figure 6.16 shows a similar pattern for increasing topology size, while the relative
performances differences increase.

Figure 6.17 introduces a new performance metric: job slowdown. The job slow-
down here is defined as FCT/flowsize in seconds per byte, which is shown on the
x axis. The plot shows the cumulative distribution of this slowdown. Of note is the
lower cap of slowdown at 0.12 for both clairvoyant as well as IMBAL with siev-
ing compared to HULA. Clairvoyant IMBAL has a the lowest slowdown across
the board, while the slowdowns of IMBAL with sieving are between HULA and
clairvoyant IMBAL. ECMP is included to show the high slowdown discrepancy
in the scenario compared to the aforementions algorithms.

Fig. 6.18 shows the FCT of flows for a load of 60 % on the x-Axis and the flow-size
on the y-axis. Fig. 6.18c shows that HULA has a diffuse pattern. HULA has
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Figure 6.15: Relative performance of different sieving bin counts for k=12 FatTree
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Figure 6.16: Relative performance of different sieving bin counts for k=16 FatTree

many small flows that have a small FCT, indicated by the bright color in the lower
left of Fig. 6.18c. For larger flows, the FCT of HULA in Fig. 6.18c is hard to
predict. For flows up to 0.5 MBytes follow a roughly linear trend. The FCTs for
a specific flow size vary.

In contrast, the FCT for clairvoyant IMBAL behaves more stable. For IMBAL,
the FCT also increases with volume. In contrast to HULA, clairvoyant IMBAL
results in a smoother behavior. In contrast to HULA, clairvoyant IMBAL has
higher FCT for smaller flows compared to HULA.

The two sieving methods mix the behavior from HULA and clarivoyant IMBAL.
The sieving methods also have more smaller flows with small FCT, indicated by
the bright color in the bottom left corner of Figs.6.18a,b. The sieving methods do
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Figure 6.17: Slowdown for k=8 FatTree

show the diffuse behavior of HULA for larger flows, but also the more predictable
behavior of clairvoyant IMBAL.
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Figure 6.18: FCT depending on flow size for a load of 60 %.



Chapter 7

Conclusions and Outlook

7.1 Conclusions

This thesis proposes IMBAL, an in-dataplane load balancing technique that keeps
links purposefully imbalanced and does not require a-prior knowledge of flow sizes.
In contrast to existing work, IMBAL optimizes for makespan, i.e., IMBAL treats
all flows in the network as belonging to one large coflow and minimizies. IMBAL
operates on the granularity of flowlets and uses a distance-vector like protocol to
distribute global network state through the network. IMBAL is implemented and
evaluated in the network simulator ns-3 and compared against HULA [KHK+16]
and ECMP. The evaluation in Section 6 shows that IMBAL is a viable alternative
to HULA, outperforming HULA on the evaluated scenarios. IMBAL improves
FCT up to 50% on fat-tree topologies ranging in size from k=8 to k=16. Further,
IMBAL results in fewer packet losses, and a smaller job slowdown. The evaluation
shows that IMBAL with sieving also has the potential to outperform HULA. The
evaluation further shows that detailed knowledge of flow size information is helpful
to improve the performance of IMBAL.

Contributions of this thesis are:

1. This thesis proposes the imbalancing of traffic as an alternative objective to
existing load balancing techniques that optimize for maximum link utiliza-
tion.

2. For this thesis, IMBAL has been designed, a load imbalancer that does
not require advanced knowledge of flow-sizes and can be implemented with
recent programmable network devices.

48
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3. For this thesis, IMBAL has been implemented in the network simulator
ns-3.

4. The effectiveness of IMBAL is shown in large scale simulations and compare
IMBAL against state-of-the art in-network load balancing algorithms of
similar complexity.

7.2 Future Work

This thesis opens up interesting directions for future work.

In terms of evaluation, a look into higher datarate simulations is necessary, since
current linkrates far surpass the 10Mbps used in the evaluation. Other interesting
evaluations could include different traffic characteristics, as the value of imbalanc-
ing in scheduling depends on the shape of flow sizes and their arrival pattern.. An
example where imbalancing would be suboptimal is uniform traffic, since no large
future jobs need to be accounted for. Additionally, persistent TCP connections
are typical for data center networks [KHK+16], and would be an interesting test
scenario.

As for flow size estimation with sieving, two main points not explored in this
thesis seem worth investigating: 1) how to optimally choose the bin size and 2)
investigation of the potential detrimental impact of increased packet reordering
due to reassignment of flowlets to different paths.

Another aspect to look into is the feasibility of IMBAL in hardware. HULA has
been implemented in P4 [B+14], a programming language targeting programmable
data planes. Because of the increased computational needs discussed in Section 5.6,
feasibility of IMBAL on commodity hardware needs to be explored if it is to be
implemented.
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Appendix A

A.1 Hula Pseudocode

• probe header fields:

– pathUtil util of best path for packet traveling in opposite direction of
probe

– torId origin id of probe, probe is carrying information for this ToR as
destination

• variables stored on switch:

– txUtil[port] outgoing utilization of port (estimator is used)

– minPathUtil[ToR] array holding best path util for every ToR up-
dateTime[ToR] array holding last arrival time of a probe from every
ToR

– flowletTime[flowHash] array of last time a packet of flow arrived

– flowletHop[flowHash] best hop for flow at th time of flowlet start

• static variables on switch:

KEEP ALIVE THRESH time after which information of ToR is con-
sidered obsolete and the first new arriving probe will be registered as best
FLOWLET TIMEOUT time after which a packet with the same flowHash
is considered a new flowlet
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1 packet p arrives at switch on port rxPort:
2 /* is packet a probe (packet has hulaprobe header)? */

3 if p = HulaProbe then
4 /* check if last hop has higher util than tho previous path

of probe */

5 if p.pathUtil < txUtil[rxPort] then
6 p.pathUtil = txUtil[rxPort]
7 end
8 /* if probe path is better or last update for the probe

origin is obsolete */

9 if p.pathUtil < minPathUtil[p.torId] or
currentT ime− updateT ime[p.torId] >
KEEP ALIV E THRESHOLD then

10 /* update values for ToR to the values of the probe */

11 minPathUtil[p.torId] = p.pathUtil
12 bestHop[p.torId] = rxPort of probe
13 updateTime[p.torId] = currentTime

14 end
15 /* update probe path util to best possible path from this

switch to its ToR */

16 p.pathUtil = minPathUtil[p.torId]

17 else
18 /* DataPackets or packets of other protocols */

19 /* if packet does not belong to an active flowlet (flow of

this packet unknown or timed out) */

20 if currentT ime–flowletT ime[flowHash] > FLOWLET TOUT then
21 /* assign flowlet to current best next hop */

22 flowletHop[flowHash] = bestHop[p.dstTor]

23 end
24 /* set next hop of packet to next hop for its flowlet */

25 p.nextHop = flowletHop[flowHash]
26 /* start/refresh timer for flowlet */

27 flowletTime[flowHash] = currentTime

28 end
29 update txTtil after packets have been sent

Algorithm 4: HULA



Appendix B

Notation und Abkürzungen

HULA Hop-by-hop Utilization-aware Load balancing Architecture
SJF Shortest Job First
CONGA Congestion Aware Balancing
ECMP Equal-Cost Multi-Path
FCT Flow Completion Time
PCT Packet Completion Time
ToR Top of the Rack
TTL Time to Live
ns-3 network simulator version 3
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